#### Problem (1)

Given the following information:

Δ = 45°49'45"
D = 07°09'43.1"
L = 693.90 ft
T = 338.17 ft
LC = 622.97 ft

Curve Table

 Station di, ft δi ci, ft EC Back 57+24.88 639.90 = L 24°54'52" = Δ/2 622.97 = LC 57+00 615.20 22°01'26" 599.99 56+00 515.02 18°26'34" 506.18 55+00 415.02 14°51'43" 410.38 54+00 315.02 11°16'51" 312.99 53+00 215.02 7°42'00" 214.38 52+00 115.02 4°07'08" 114.92 51+00 15.02 0°32'17" 15.02 BC 50+84.98 0.000 0°00'00" 0.000

##### Determine curve point coordinates.

Compute azimuth of incoming tangent

Compute coordinates of BC and EC

Set up the azimuth and coordinates equations

Using the az and coord equations, step through the table for each curve point

 Station Azi Ni, ft Ei, ft EC Back 57+24.88 107°54'23" 1274.07 check 10,161.38 check 57+00 110°47'26" 1273.15 10,136.51 56+00 114°22'40" 1277.25 10,036.66 55+00 117°57'32" 1293.78 9,938.10 54+00 121°32'24" 1322.46 9,842.37 53+00 125°07'15" 1362.85 9,750.96 52+00 128°46'07" 1414.32 9,665.30 51+00 132°16'58" 1584.39 9,834.78 BC 50+84.98 132°49'15" 1486.18 9,575.62

#### Problem (2)

For the following short alignment data: