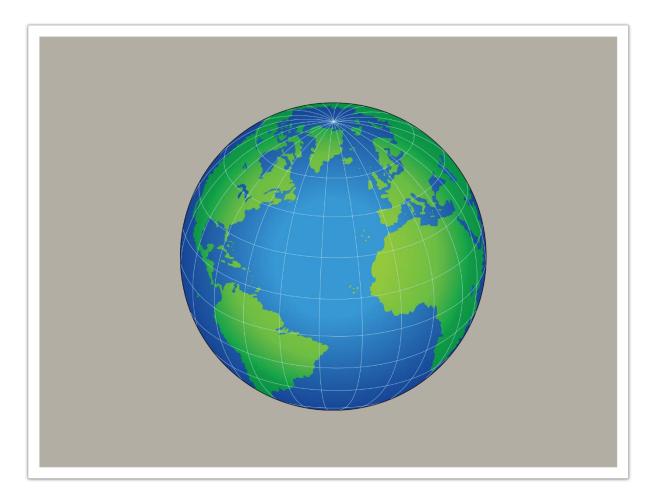

Session 27 Ground Grid - Simple, Right?

2025 WSLS Annual Institute 23 January 2005 Jerry Mahun, PLS Thrice-retired jerry.mahun@gmail.com https://jerrymahun.com I. Spatial Systems

II. Distortions

III. Earth Models


IV. Creating a Grid

V. Wisconsin Coordinate Systems

VI. Ground and Grid

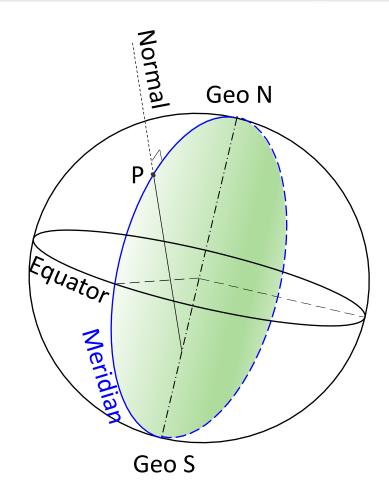
VII. Grids and PLSS Lost Corners

Grid Ground - Simple, Right?

I. Spatial Systems

A. Three-Dimensional

1. Geodetic Coordinates

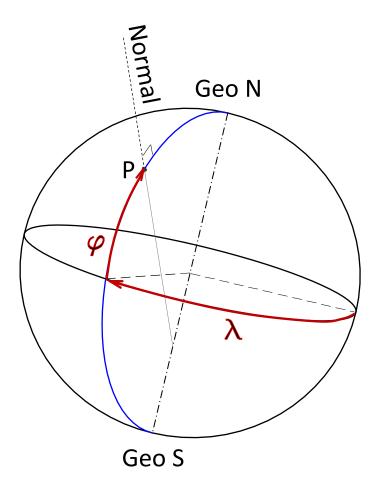

Reference defined by ellipsoid and fit.

NAD 83 - GRS 80 fit to Earth's mass center.

NAD 27 - Clarke 1866 fit to Meades Ranch, KS

- Normal A line from the observer's position, P, perpendicular to the ellipsoid
- Meridian An elliptical section containing the normal and semi-minor axes. Defines Geodetic N at a point.

Geodetic meridians converge.

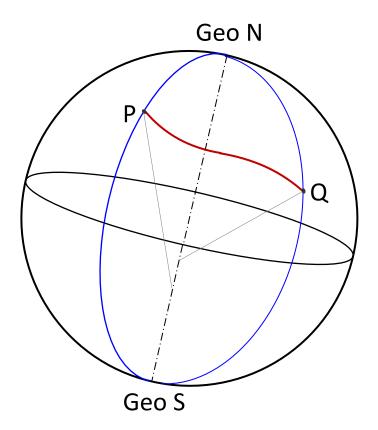


A. Three-Dimensional

1. Geodetic Coordinates

Longitude (λ) - Angle in Equatorial plane E or W from Greenwich Meridian 0°-180°W; 0°-180°E

Latitude (Φ) - Angle in meridian N or S of the Equator. 0°-90°N; 0°-90°S

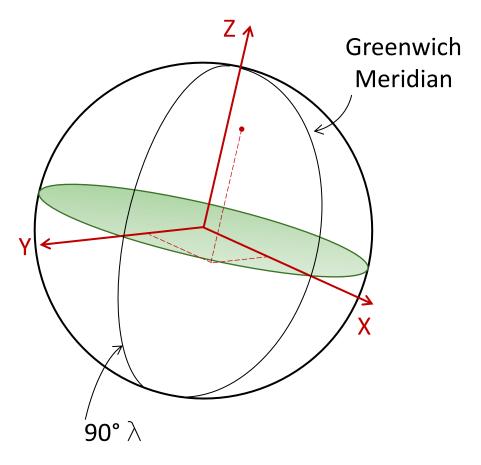

ALCONSTITUE

A. Three-Dimensional

1. Geodetic Coordinates

Disadvantages:

- Positions are expressed in angular values
- Distances are in angular values
- Elliptical geometry
 - Shortest distance between two points is a *geodesic* - shallow s-shape curve.


I. Spatial Systems

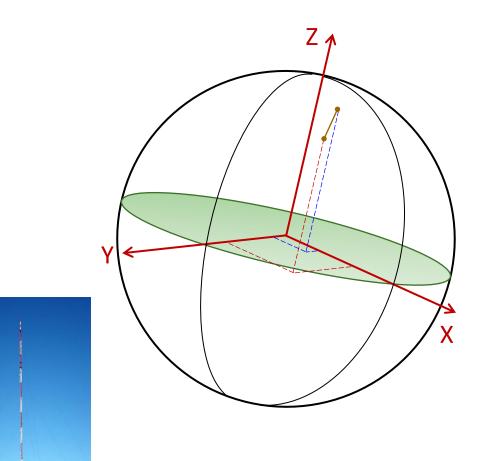
A. Three-Dimensional

2. Terrestrial Coordinate System - TCS

Three axis rectangular system Origin at Earth's mass center Coordinates are linear values

I. Spatial Systems

A. Three-Dimensional

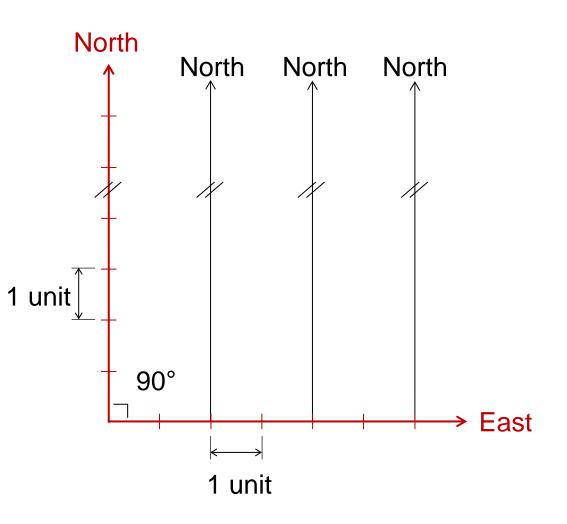

2. Terrestrial Coordinate System - TCS

Disadvantages:

Huge coordinate values.

Negative coordinates

No "up" (vertical direction) Top and bottom of vertical structures have different 3D coordinates.

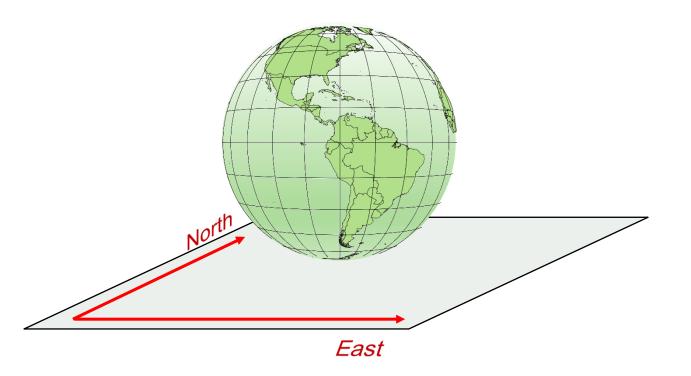

1. Planar

Characteristics

- a. Orthogonal
- b. Parallel north lines
- c. Uniform scale in both directions

Comps are simple.

Disadvantage(s)?

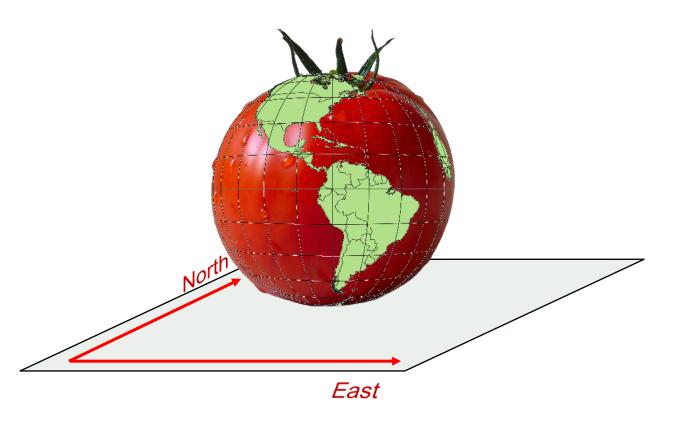


1. Planar

Disadvantages

We're on a 3D earth

We want to put it in a 2D system

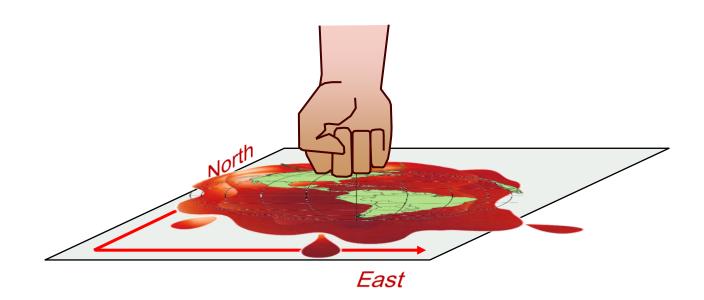


1. Planar

Disadvantages

We're on a 3D earth

We want to put it in a 2D system


1. Planar

Disadvantages

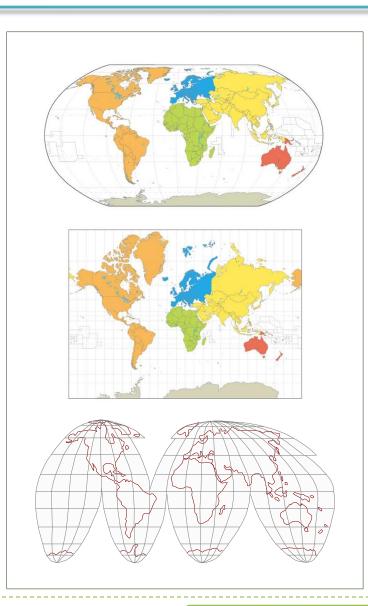
We're on a 3D earth

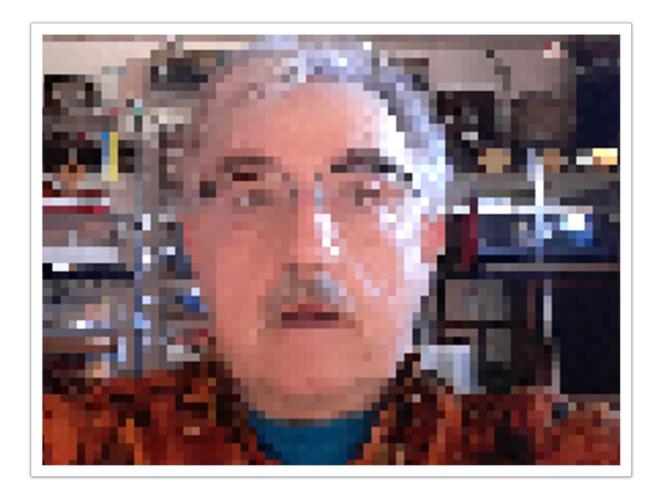
We want to put it in a 2D system

With a direct projection we get a distorted representation

I. Spatial Systems

B. Two Dimensional

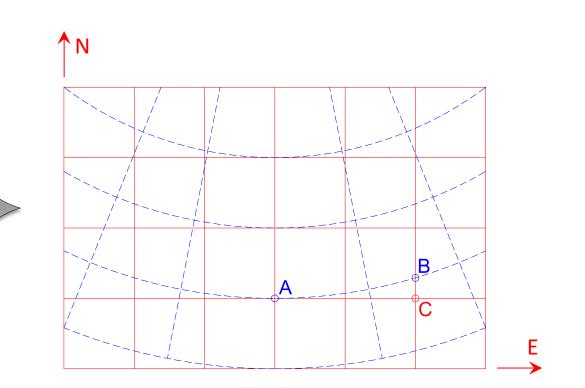

1. Planar


Disadvantages

We're on a 3D earth We want to put it in a 2D system

With a direct projection we get a distorted representation

Different mathematical projections distort different ways.



A. Projection Area

The smaller the area projected, the smaller the distortions.

Grid (2D) - Solid red Geodetic (3D) - Dashed blue

The two primary distortions are

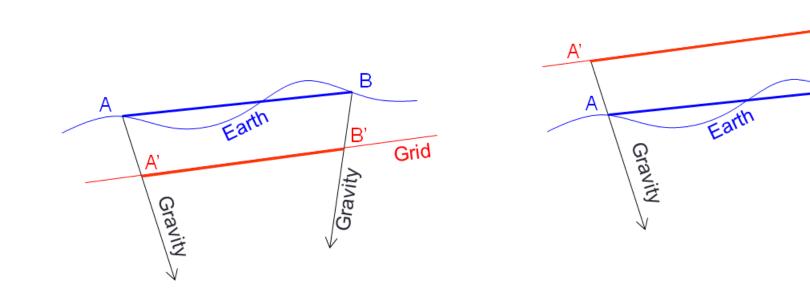
1. Direction

3D meridians converge, 2D do not.3D E/W lines are curved, 2D are straight.

No distortion at center of projection Increases moving E & W of center

 γ : *convergence*; angle between grid and geodetic north

Grid (2D) - Solid red Geodetic (3D) - Dashed blue


B. Types

The two primary distortions are

2. Distance

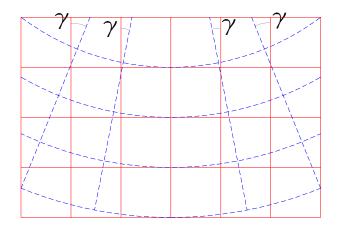
Ground points must be projected vertically to the 2D grid plane.

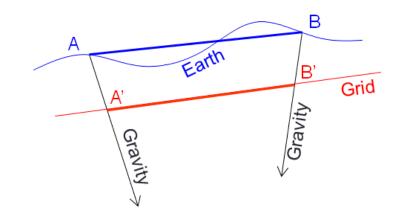
This moves them closer together or further apart, altering distance.

B

В

Gravity


Grid


C. Compensation

Except for *extremely* small areas, projecting 3D to 2D will always create direction and distance distortions.

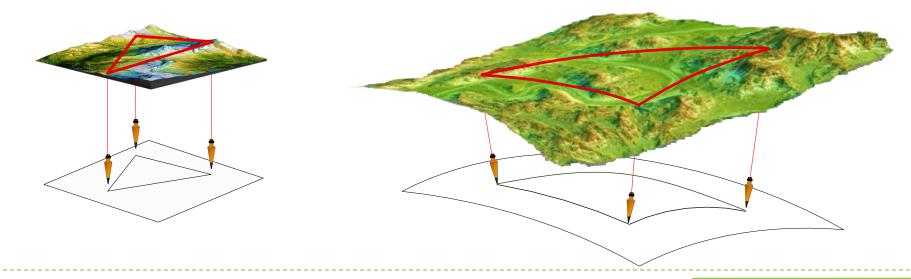
They are *systematic* errors - can be compensated mathematically *as long as* we know how the surfaces are mathematically connected.

For that, we need some earth models.

MEMBER MEMBER MEMBER

A. Physical Earth - Ground

The surface on which we measure.


Not mathematical.

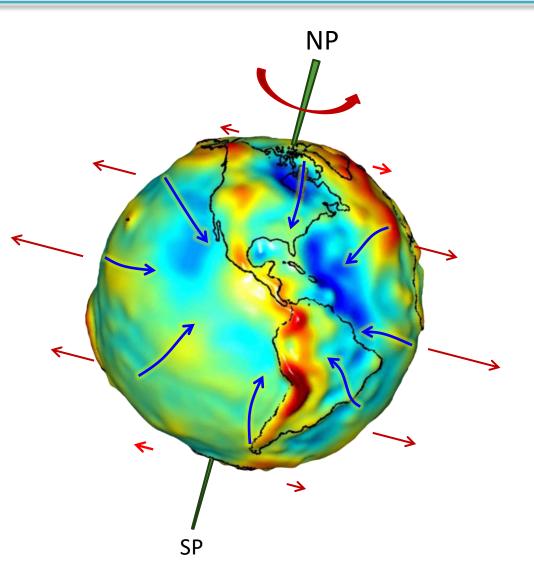
Over small areas, we can assume a flat reference system - plane; simple grid

Over larger areas, must account for earth's shape and dynamics - curved reference

Must then project from curved surface to a flat grid.

Need some to connect mathematically

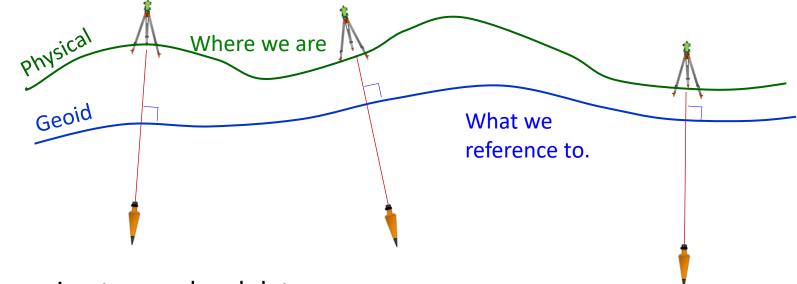
B. Geoid


An equipotential surface defined by gravity (in) and centrifugal force (out).

Gravity = f(mass)

Earth: non-homogeneous; mass anomalies

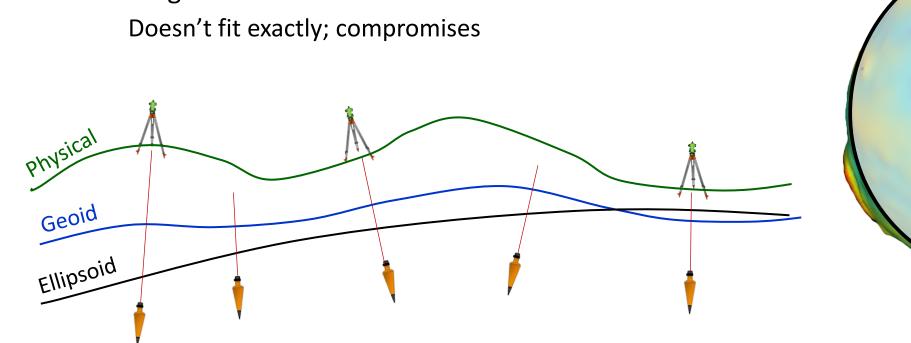
⇒ Lines of gravity are neither parallel nor straight.

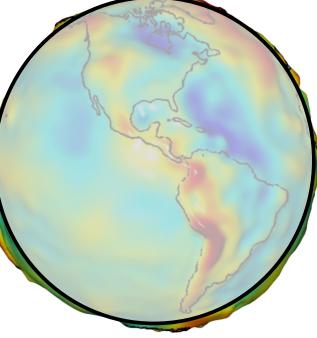

Geoid is a lumpy and changing nonmathematical surface.

B. Geoid

Gravity is perpendicular to the geoid

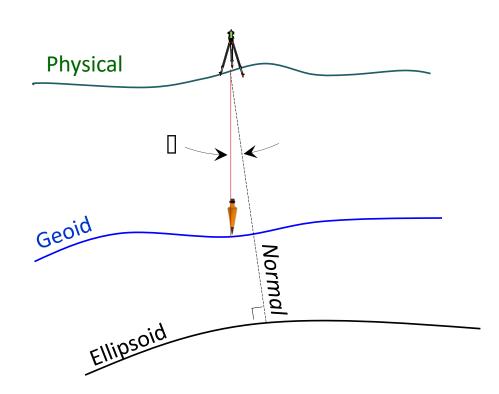
Centering a bubble or using a plumb bob orients equipment to the geoid.


Geoid approximates sea level datum


Connected to physical Earth by elevations - orthometric heights

C. Ellipsoid

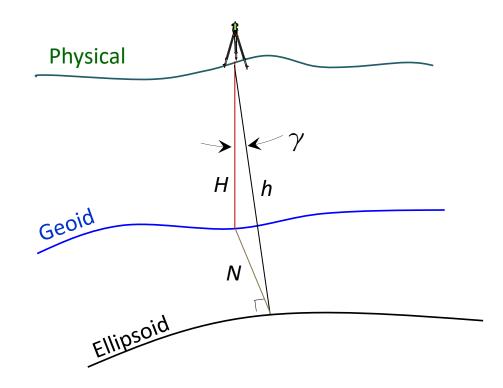
- Mathematical 3D surface
- Fit to geoid



C. Ellipsoid

Geoid - Ellipsoid fit at a point is a function of Skewness and Vertical separation.

Skewness - Deflection of the vertical, δ Angle between directions of gravity and ellipsoid normal.

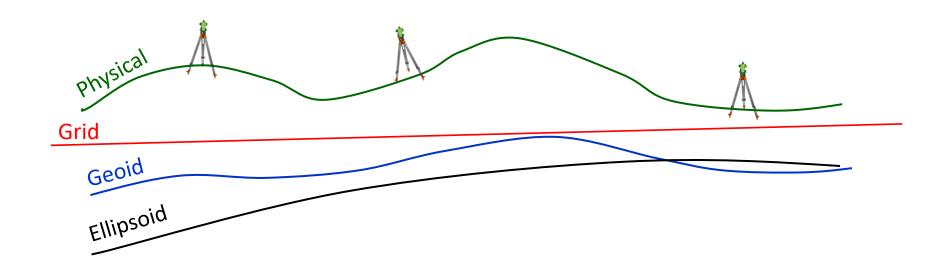

C. Ellipsoid

Geoid - Ellipsoid fit at a point is a function of Skewness and Vertical separation.

Vertical separation

- Heights between the surfaces
 - H Orthometric: geoid to ground
 - N Geoid: ellipsoid to geoid
 - h Ellipsoidal: ellipsoid to ground

h = H+N



D. Grid

The final surface is a grid

Can be more than one depending on coordinate systems needed.

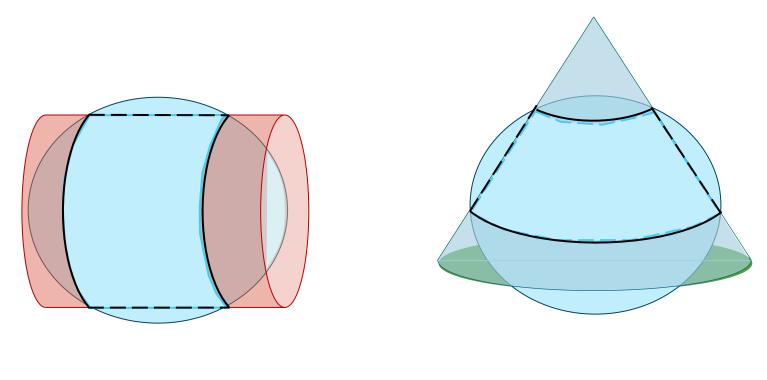
Move points from ground, through geoid and ellipsoid, to the grid

0 -5 0 -3 0 -**4**0 2 0 **4**0- 30- 50- 7

. . . . [. . . .] [. . . .] . . .] . . .] . . .] . . .] . . .] . . .] . . .] . . .] . . . [

. . . . [. . .] . . . [. . .] . . .] . . .] . . .] . . .] . . .] . . .] . . .] . . .] . . .] . . .

0 20 30 40 50 40 30 20 1

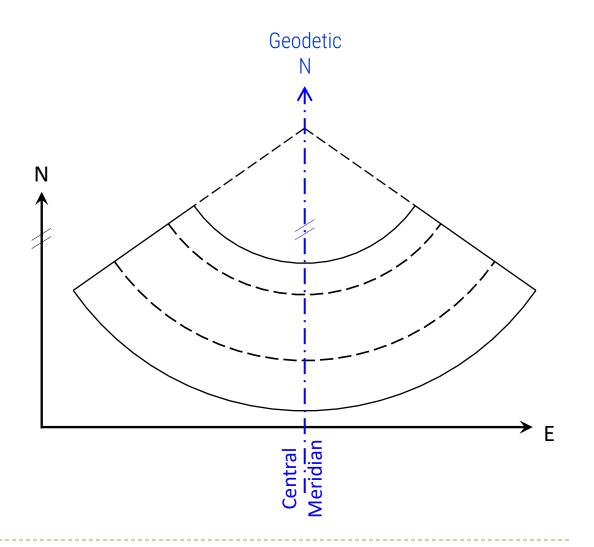

<u>..... |</u>

IV. Creating a Grid

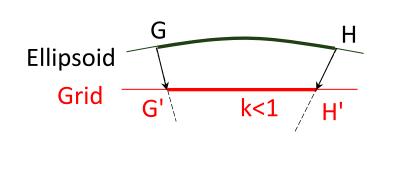
MEMBER -

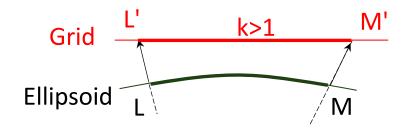
A. Projection Surfaces

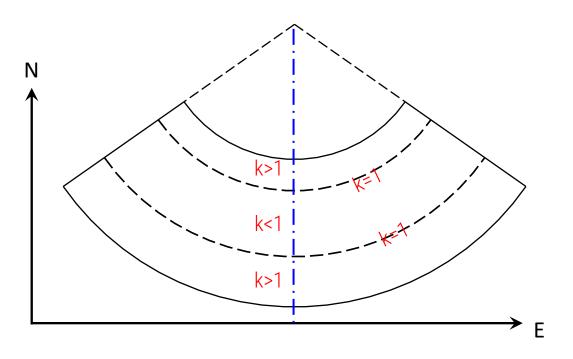
Grid is based on a Projection Surface which is fit to Ellipsoid


Cylinder

- B. Lambert Conic Conformal
 - Cone placed over (and through) ellipsoid.
 - Points projected.
 - Projection is laid out flat and a coordinate system overlaid.

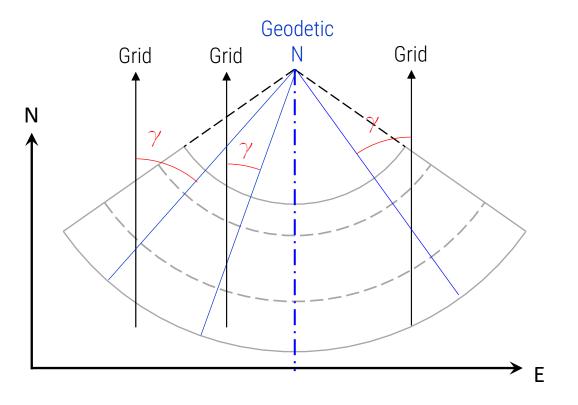






Distance distortion

Scale, k, is constant E/W; varies N/S

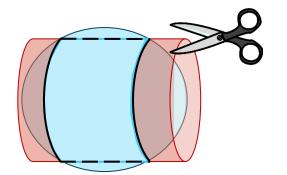


B. Lambert Conic Conformal

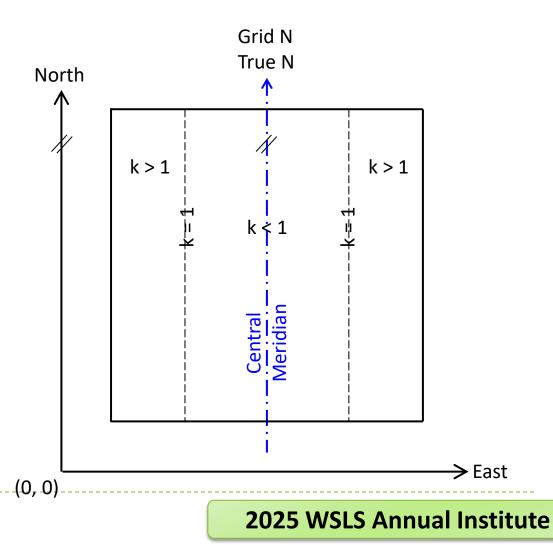
Direction distortion

Convergence, γ , is angle between Grid and Geodetic North.

0° at CM, increases to E and to W



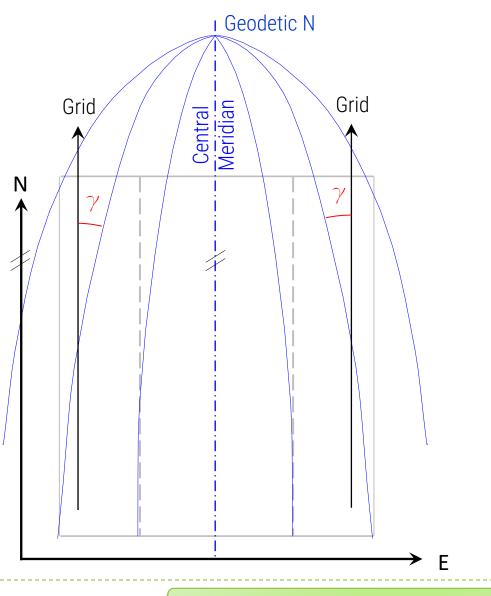
C. Mercator Transverse Cylindric

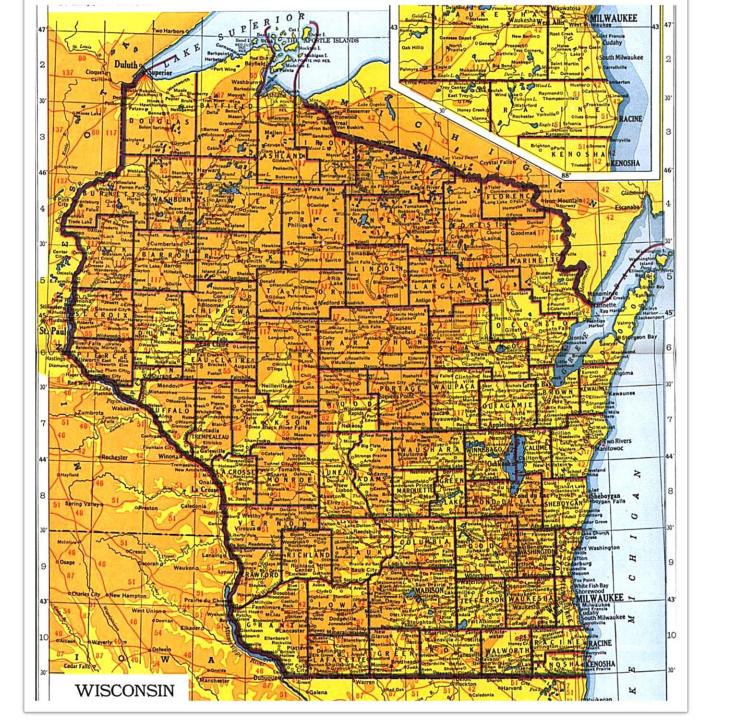

The projection surface is "rolled" out.

Central Meridian defines Grid North

Distance distortion

Scale, k, is constant N/S; varies E/W

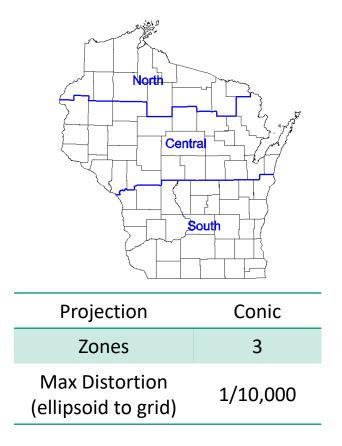

IV. Creating a Grid



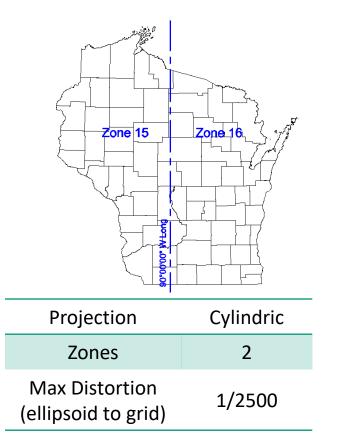
C. Mercator Transverse Cylindric Direction distortion

Convergence, γ , is angle between Grid and Geodetic North.

0° at CM, increases to E and to W



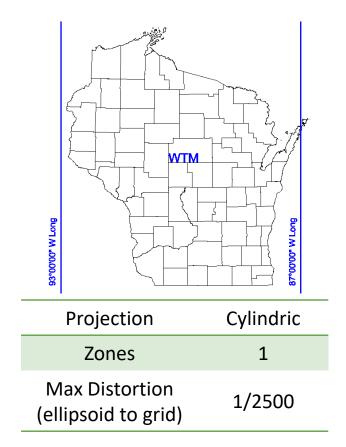
V. Wisconsin Coordinate Systems


V. Wisconsin Coordinate Systems

A. Nationally Defined & Supported

1. State Plane Coordinate (SPC) system

2. Universal Transverse Mercator (UTM)



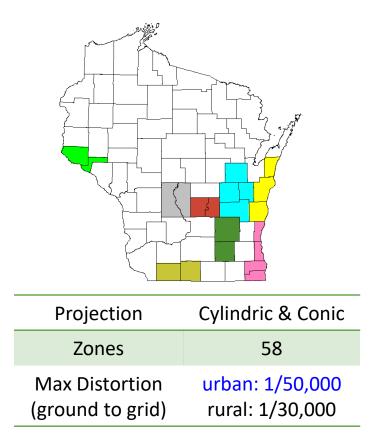
2025 WSLS Annual Institute

Slide 35/69

B. Locally Defined and Supported

1. Wisconsin Transverse Mercator (WTM) System

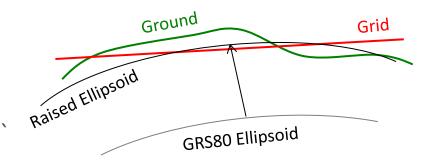
Developed by WisDNR to facilitate statewide coverage on a single coord grid. Modified UTM


lodified UTIVI

Cylindric projection rotated 3° placing it halfway between UTM Zones 15 & 16.

WisDNR data is generally provided in WTM system.

2. Low Distortion Projections



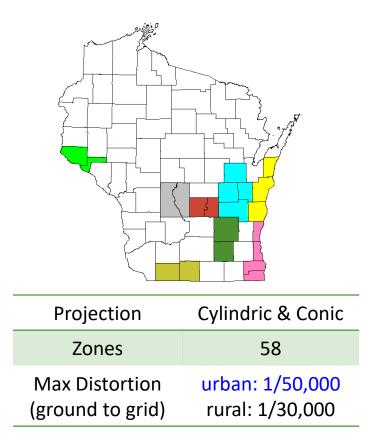
a. WCCS - Wis County Coord Systems

Original design.

All projections used raised ellipsoids

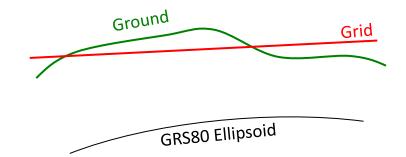
GRS80 + Ave Geoid ht + Median elev

Results in non-standard ellipsoid


⇒ Different datum

Caused problems with some software.

V. Wisconsin Coordinate Systems


B. Locally Defined and Supported

2. Low Distortion Projections

- b. WisCRS Wis Coord Reference Systems
 - WCCS redefinition

Same zones but each used GRS 80 ellipsoid directly.

Maintains accuracy with respect to WCCS. Allowable design difference: ± 5 mm

2025 WSLS Annual Institute

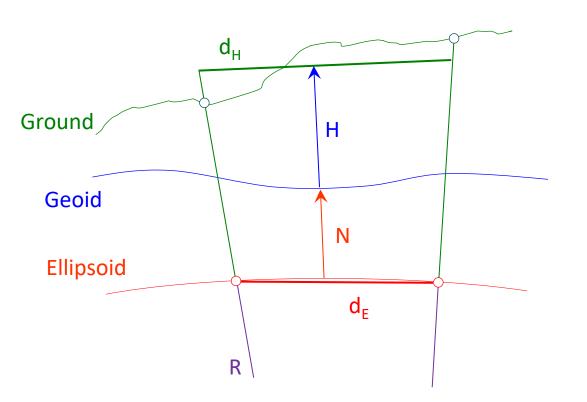
Slide 38/69

VI. Ground and Grid

What's the beef?

A. Distortion Compensation

1. Distance


Two steps

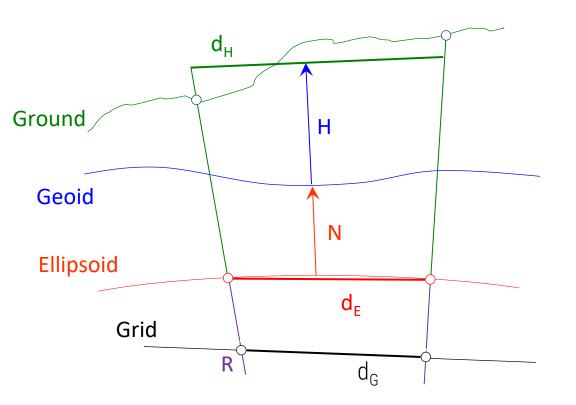
a. Ground to ellipsoid

$$EF = \frac{R}{R+H+N}$$

$$d_{\scriptscriptstyle E} = d_{\scriptscriptstyle H} \times EF$$

- $d_{\rm H}~$ Horizontal ground distance
- d_E Ellipsoidal (geodetic) distance
- EF Elevation Factor
- R Mean earth radius
- H Orthometric ht (elev)
- N Geoid height
- k Scale factor

R = 20,902,000 ft = 6,371,000 m (approx.)

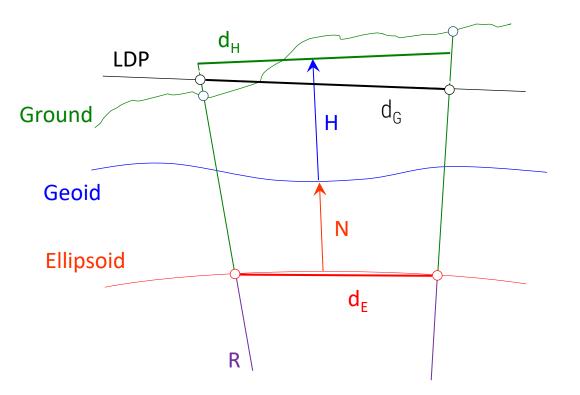

A. Distortion Compensation

1. Distance

Two steps

- b. Ellipsoidal to grid
 - $d_G = d_E \times k$
 - d_G Grid distance
 - d_E Ellipsoidal (geodetic) distance
 - k Grid scale factor
- c. Combined factor
 - $CF = EF \times k$

 $d_G = d_H \times CF$



1. Distance

c. LDP

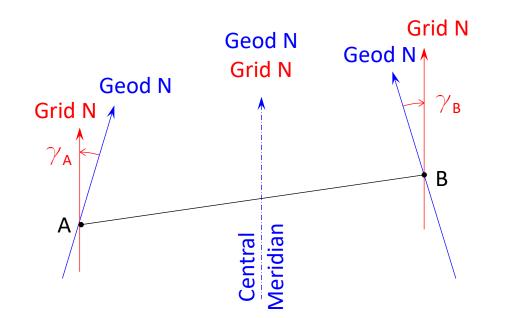
Because a LDP grid is near-ground level, there may be no discernible difference between ground and grid distances.

Most of the time, this reduction can be ignored for both WCCS and WisCRS grids.

A. Distortion Compensation

2. Direction

The convergence angle, γ , is from Geodetic N to Grid N


It is positive (cw) East of the CM, negative (ccw) West of the CM

To convert Geodetic (Ground) direction to Grid:

 $t = \alpha - \gamma$

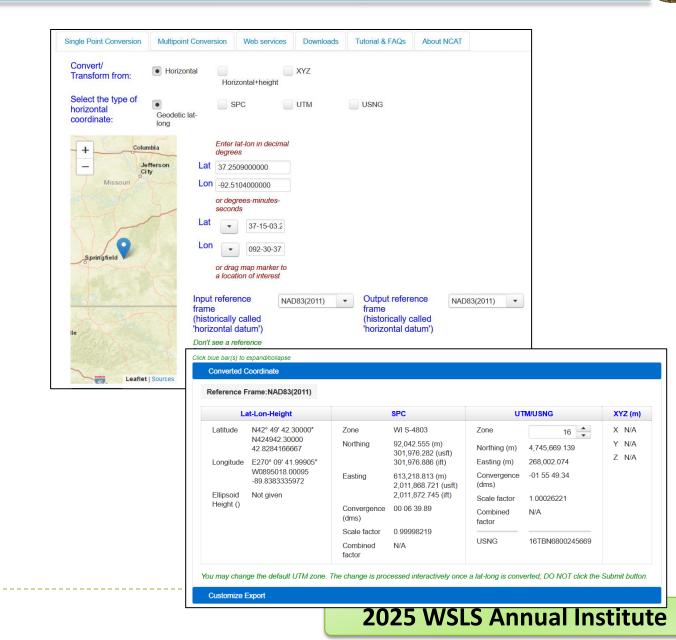
- t Grid azimuth
- lpha Geodetic azimuth
- γ Convergence

Might be significant for an LDP

VI. Ground and Grid

B. Reduction Elements

Where do we get the ortho and geoid heights, scale, and convergence angles?


NGS software (*Geodetic Tool Kit*):

NCAT¹

GEOIDXX

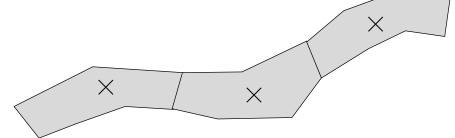
Ortho heights from USGS topoquads

¹NCAT does not currently support local LDPs. When NATRF2022 is adopted, NCAT will include NGS-accepted LDPs.

B. Reduction Elements

NSRS Datasheet	DESIGNATION - JERRY PID - NH0936 * NAD 83(2011) POSITION- 42 54 24.02215(N) 089 43 53.76413(W) ADJUSTED * NAD 83(2011) ELLIP HT- 324.836 (meters) (06/27/12) ADJUSTED * NAD 83(2011) EPOCH - 2010.00 * NAVD 88 ORTHO HEIGHT - 358.6 (meters) 1177. (feet) VERTCON
	GEOID HEIGHT - <t< th=""></t<>
	North East Units Scale Factor Converg. SPC WI S - 100,758.292 621,917.891 MT 0.99996957 +0 11 03.9 SPC WI S - 330,571.16 2,040,408.95 sFT 0.99996957 +0 11 03.9 UTM 16 - 4,754,071.382 277,008.712 MT 1.00021177 -1 51 37.6 SPC WI S - 0.99994906 x 0.99996957 = 0.99991863 UTM 16 - 0.99994906 x 0.99996957 = 0.99991863 UTM 16 - 0.99994906 x 1.00021177 = 1.00016082

C. Variations

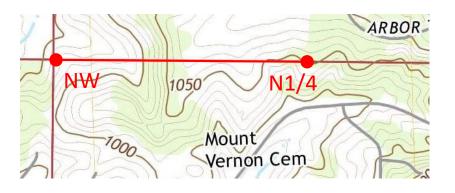

1. Elevation factor, EF

 $EF = \frac{R}{R+H+N}$

- N doesn't change much so can generally use a single value over the project area.
- Depending on terrain, H can be: project area average – use for all lines computed average for each line

2. Grid scale, k

- For relatively small projects, a single value at project center could be used.
- Larger/longer projects would require applying different k in different areas.


SPC/UTM - use approx. lat & long with *NCAT* to determine k.

MEMBER MEMBER MEMBER MEMBER


D. SPC Example

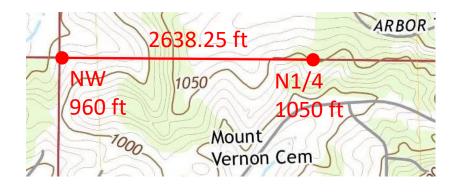
Quarter line NW-N1/4 of Sec 34 T5N R7E Distance: 2638.25 ft Bearing: S88°11′34″E Determine WI SPC South zone grid distance and bearing from NW to N1/4

From topoquad NW elev: 960 ft N1/4 elev: 1050 ft Approx position of NW corner is: 42°57.5' Lat 89°39.75' Long

Quarter line NW-N1/4 of Sec 34 T5N R7E Distance: 2638.25 ft Bearing: S88°11'34"E Determine WI SPC South zone grid distance and bearing from NW to N1/4


```
From topoquad
NW elev: 960 ft
N1/4 elev: 1050 ft
Approx position of NW corner is:
42°57.5' Lat
89°39.75' Long
```

From NCAT k = 0.99996224 $\gamma = +0^{\circ}13'53.46''$ From *GEOID18* N = -34.046 m



- 1. Distance
 - a. Ground to ellipsoid

$$H = \frac{960 + 1050}{2} = 1005$$
$$EF = \frac{20,902,000}{20,902,000 + 1005 + (-111.7)}$$

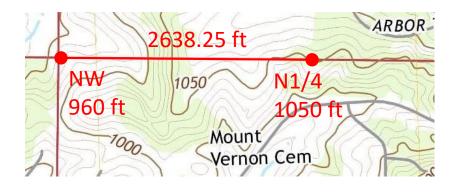
= 0.99995 7264

 $d_E = 2638.25 ft \times 0.999957264 = 2638.137 ft$

R = 20,902,000 ft

From *NCAT* k = 0.99996224 $\gamma = +0^{\circ}13'53.46''$ From *GEOID18* N = -34.046 m = -111.7 ft

- 1. Distance
 - a. Ground to ellipsoid


$$H = \frac{960 + 1050}{2} = 1005$$
$$EF = \frac{20,902,000}{20,902,000 + 1005 + (-111.7)}$$
$$= 0.999957264$$
$$d = 2628.25 \text{ ft} \times 0.000057264 = 2628$$

 $d_{\varepsilon} = 2638.25 ft \times 0.99995 \ 7264 = 2638.137 ft$

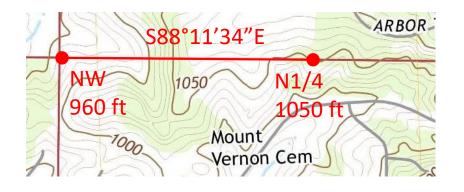
b. Ellipsoid to grid

 $d_G = d_E \times k$

 $d_G = 2638.137 ft \times 0.999957264 = 2638.024 ft$

R = 20,902,000 ft

From *NCAT* k = 0.99996 224 $\gamma = +0^{\circ}13'53.46''$ From *GEOID18* N = -34.046 m = -111.7 ft



2. Direction

Convert bearing to azimuth

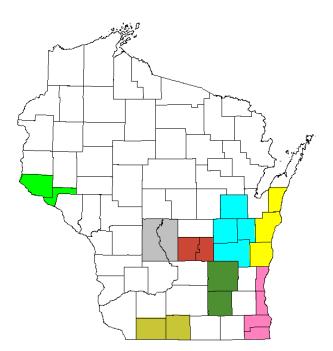
 $Az = 180^{\circ}00'00'' - 88^{\circ}11'34''$ = 91°48'26''

Convert to Grid Az $Grid Az = 91^{\circ}48'26'' - (+0^{\circ}13'53'')$ $= 92^{\circ}02'19''$ Convert to bearing $Grid Brg = 180^{\circ}00'00'' - 92^{\circ}42'19''$ $= 587^{\circ}17'41''E$

R = 20,902,000 ft

From *NCAT* k = 0.99996 224 $\gamma = +0^{\circ}13'53.46''$ From *GEOID18* N = -34.046 m = -111.7 ft

E. WCCS/WisCRS


1. Reduction Elements

LDPs are not supported by *NCAT*, how to get N, convergence, and scale?

N: Use *GEOIDXX*, but need geodetic coordinates.

 γ and k: ?

Need LDP-specific software.Some surveying and mapping software have support for LDPs, including Wisconsin's.

E. WCCS/WisCRS

2. *ConCoord* v0.95

At https://jerrymahun.com

ConCoord v0.95		- 🗆 ×
From System County - WisCRS Select County Iowa Units Survey ft	To System County - WisCRS Select County Iowa Units Survey ft	Input/Output Manual Entry ~
Convert North 105692.910 East 457593.430	Results North 105,692.9100 sft East 457,593.4300 sft Convergence +0°13'09.94" Scale 1.00004 80624	Convert Reset Help Quit J. Mahun Feb 2021

2025 WSLS Annual Institute

Slide 53/69

E. WCCS/WisCRS

3. Wis83CoordConv1-5.xlsm

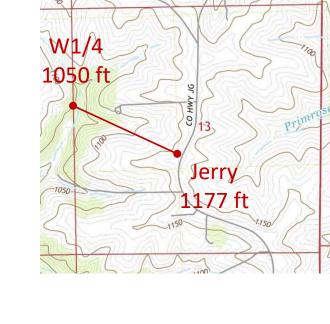
At https://jerrymahun.com

	A B	С	D	E	F	G	Н		J
1	1 Wisconsin NAD 83 Coordinate Conversions								
2	Version 1.5 - 4/24				Instructions	WCCS or WisCRS?	Reference	s	
3		Select units					_		
4		from list			This workbook DOE	ES NOT not convert c	oordinates betw	een datum realiz	zations
5	Units	Survey Ft	 iter values to convert 	in the colored cells					
6			Lat (DD.MMSSss)	Long (DD.MMSSss)	North (Survey Ft)	East (Survey Ft)	Convergence	Grid Scale	_
7	State Plane	South	43°.19'.43.5"	90°.27'.37."	484,625.7693	1,846,032.7115	-0°18'58.530"	0.99993 33442	
8			+42°48'42.093525"	+88°23'30.583583"	300,000.0000	2,400,000.0000	+1°06'17.927"	0.99998 51232	<u> </u>
9									_
10	UTM / WTM	WTM	43°.19'.43.5"	90°.27'.37."	1,041,421.2355	1,583,606.1704	-0°18'57.019"	0.99961 71285	
11			+41°15'22.123365"	+94°27'01.262190"	317,427.0000	482,683.0000	-2°56'16.999"	1.00131 15573	<u>.</u>
12									_
13	WCCS Conic	Richland	43°.19'.43.5"	90°.27'.37."	442,817.4664	656,090.8685	-0°01'13.413"	0.99999 50587	
14	See Map		+42°39'12.042340"	+91°52'35.248029"	200,000.0000	275,000.0000	-0°59'31.330"	1.00006 27240	
15									_
16	WCCS Cylindric	Polk	45°.14'.00."	92°.13'.00."	208,919.2568	572,350.9903	+0°17'44.980"	1.00001 31574	
17	See Map		+44°50'26.723394"	+92°10'52.891669"	65,825.6480	582,246.7690	+0°19'07.349"	1.00001 56964	_
18									_
19	WisCRS Conic	Richland	43°.19'.43.5"	90°.27'.37."	442,817.4674	656,090.8678	-0°01'13.413"	1.00003 75716	
20	See Map		+42°25'42.432849"	+91°57'27.067401"	118,430.0705	251,695.2414	-1°02'51.547"	1.00015 82369	_
21									_
22	WisCRS Cylindric	Iowa	45°.14'.00."	92°.13'.00."	989,000.2534	-158,595.4739	-1°27'34.985"	1.00035 97454	
23	See Map		+42°49'42.325888"	+89°50'18.002180"	105,692.9100	457,593.4300	+0°13'09.937"	1.00004 80624	_
24									

----- 25

2025 WSLS Annual Institute

MEMBER


F. WisCRS Example

NSRS point *Jerry* to *W1/4* cor Sec 13 T5N R6E Distance: 2313.88 ft Azimuth: 283°39'44" Elev: 1050 ft (topoquad) What are the distance and direction in the WisCRS Dane County Coord System?

Jerry's data sheet has H and N, but not Dane Co coords data.

Must compute needed elements.

Use Jerry's Lat and Long in ConCoord.

Pt *Jerry* 42°54'24.02215" Lat 89°43'53.76413" Long H = 1177 ft N = -33.902 m = 111.2 ft

F. WisCRS Example

ConCoord v0.95		– 🗆 X
		- U ×
From System Geodetic ~	To System County - WisCRS Select County Dane V Parameters	Input/Output Manual Entry ~
	Units Survey ft ~	
Convert	Results	
Latitude 42.542402215	North 421,741.9099 sft	<u>Convert</u> <u>R</u> eset
Longitude 89.435376413	East 728,105.7413 sft	
Format: DDD.MMSSsssss	Convergence -0°12'40.57"	<u>H</u> elp <u>Q</u> uit
	Scale 1.00004 24995	
		J. Mahun Feb 2021

VI. Ground and Grid

F. WisCRS Example

1. Distance

$$H = \frac{1177 + 1050}{2} = 1113.5$$
$$EF = \frac{20902000}{20902000 + 1113.5 + (-111.2)}$$
$$= 0.999952050$$

 $CF = 0.99995 2050 \times 1.00004 24995$

=0.99999 4547

 $d_G = 2313.88 ft \times 0.99999 4547 = 2313.867 ft$

2. Direction

Grid
$$Az = 283^{\circ}39'44'' - (-0^{\circ}12'40.6'')$$

= 283°52'24.6''

W1/4 1050 ft 2313.88 ft 283°39'44" Az Jerry 1177 ft k: 1.00004 24995 7: -0°12'40.6"

2025 WSLS Annual Institute

Slide 57/69

VI. Ground and Grid

F. WisCRS Example

1. Distance

$$H = \frac{1177 + 1050}{2} = 1113.5$$

$$EF = \frac{20902000}{20902000 + 1113.5 + (-111.2)}$$

$$= 0.999952050$$

$$CF = 0.99995 \ 2050 \times 1.00004 \ 24995$$

$$= 0.99999 \ 4547$$

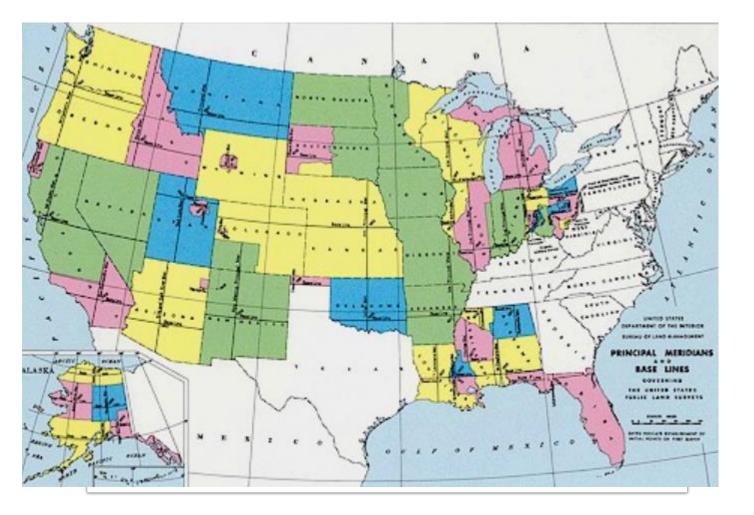
$$d_{G} = 2313.88 \ ft \times 0.99999 \ 4547 = \underline{2313.867} \ ft$$

2. Direction

Grid Az =
$$283^{\circ}39'44'' - (-0^{\circ}12'40.6'')$$

= 283°52′24.6″

Distance distortion?

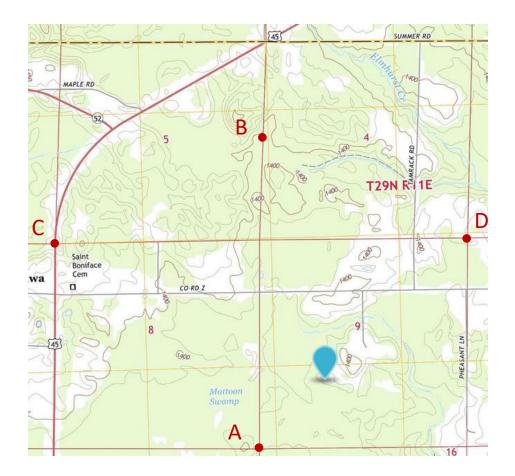

$$\frac{1}{1 - CF} = \frac{1}{1 - 0.999994547} = 183385$$

 $\Rightarrow \frac{1}{183,400}$

1.150

Can ignore reduction

2025 WSLS Annual Institute

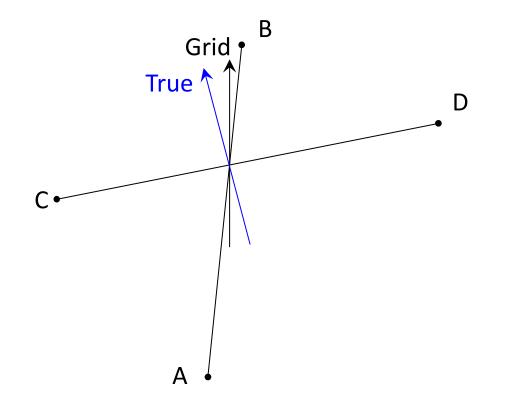

Slide 58/69

VII. Grids and PLSS Lost Corners

MEMBER - CO

A. Cardinal Equivalents

Proportionate Measurement


Recreating original locations based on record and contemporary measurements. Proportioning.

PLSS Manual states that proportioning must be done in *cardinal directions*

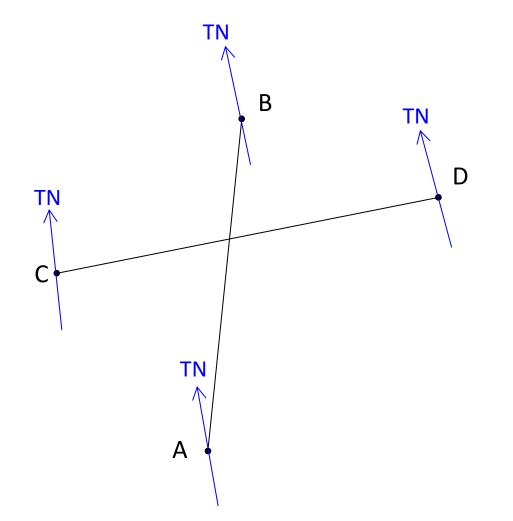
True N/S & True E/W

(2009 Manual treats Geodetic and True the same, which isn't <u>technically</u> correct, but close enough.)

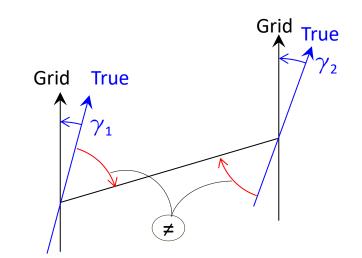
A. Cardinal Equivalents

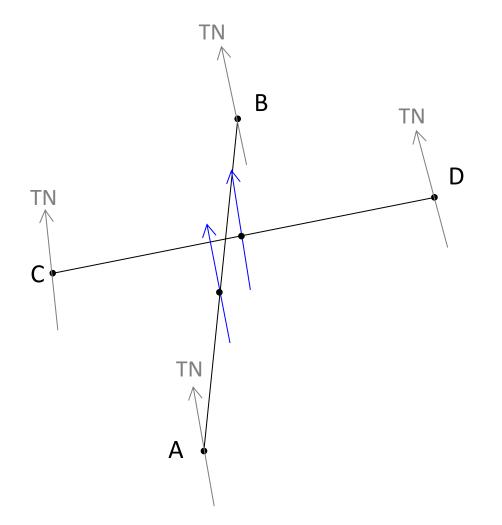
Proportionate Measurement

If working in a grid system must compensate for convergence.


Before or after proportioning?

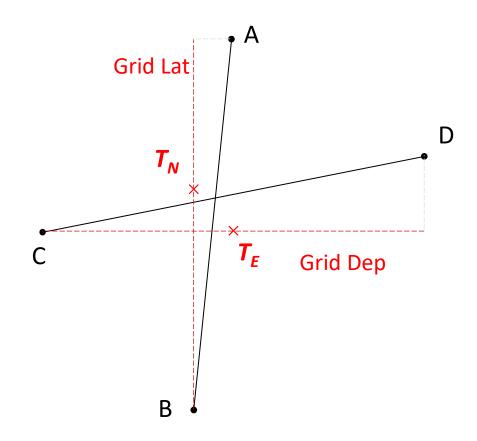
How?


 γ = f(Longitude) - it's not constant along E/W lines


Is its effect significant?

Compensate Before Proportioning
 Compute grid bearings from coordinates
 Determine convergence at each point
 Convert grid to true directions
 True directions are not exactly 180° apart

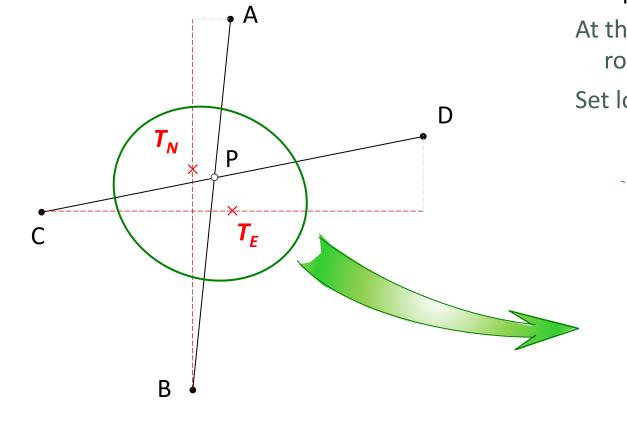
1. Compensate Before Proportioning


PLSS Manual: use mean bearing of a line for its cardinal computations.

Compute the true bearings at line midpoints.

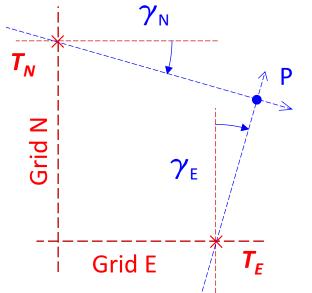
Then compute cardinal equivalents.

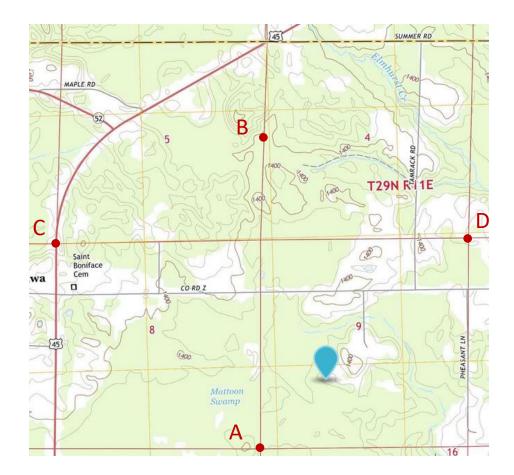
Continue regular DPM process.


2. Compensate After Proportioning

Set temporary points using grid equivalents

Grid Brng _{AB}	Grid Dist _{AB}
Grid Lat _{AB}	Grid Dep _{AB}
T _N by SPM	
Grid Brng _{CD}	Grid Dist _{cD}
Grid Lat _{AB}	Grid Dep _{AB}
T _F by SPM	
	Grid Lat _{AB} T _N by SPM Grid Brng _{CD} Grid Lat _{AB}

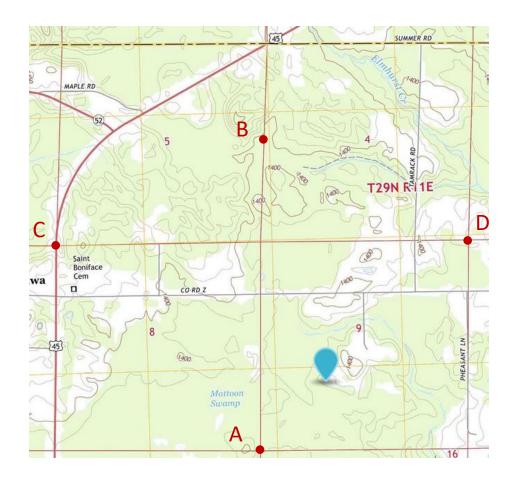

Compute $\gamma_{\rm N}$ and $\gamma_{\rm E}$ at the temp points.


2. Compensate After Proportioning

At the two temporary points project lines rotated $\gamma_{\rm N}$ and $\gamma_{\rm E}$ from Grid N and Grid E. Set lost corner at intersection of the lines.

MEMBER P

C. Significant Effect?



- Does ignoring convergence affect corner position?
- Example: Shawano County
 - SW cor S4 T29N R11E is lost.
 - Existing corners and their Shawano Co WisCRS coordinates are:

ID	Corner	North (ft) East (ft)	γ
А	SW S9	352,289.81 711,348.81	-0°24'32"
В	W1/4 S4	360,188.90 711,493.25	-0°24'33"
С	SW S5	357,550.43 706,134.07	-0°25'25"
D	SE S4	357,607.73 716,672.60	-0°23'46"
		γ computed usir	ng ConCoord,

MEMBER - PA

C. Significant Effect?

Does convergence have a significant effect?

Computed values

Pt	North (ft)	East (ft)	γ
T _N	357,556.08	711,348.74	-0°24'33"
T_E	357,550.43	711,403.34	-0°24'33"

Pt	North (ft)	East (ft)	Convergence
SW4	357,556.08	711,403.34	Not applied
SW4	357,555.69	711,403.37	Applied

Coordinates are close, but the two positions are 0.39 ft apart.

Enough for a pin cushion.

I. Spatial Systems

II. Distortions

III. Earth Models

IV. Creating a Grid

V. Wisconsin Coordinate Systems

VI. Ground and Grid

VII. Grids and PLSS Lost Corners

Grid Ground - Simple, Right?

2025 WSLS Annual Institute