Measurement Errors and Their Effects - Assignment

Complete this assignment prior to the presentation.
Have fun.

True or False

T F 1. Random errors can be completely eliminated from a measurement.
T F 2. Standard deviation is a precision indicator.
T F 3. It is possible to have a measurement set that is accurate but not precise.
T F 4. You can measure an angle twice as accurately using a total station with a 2" manufacturer's stated angle accuracy than using one with a 4" stated accuracy.
T F 5. Determining a point elevation by differential leveling is an example of a direct measurement.

T F 6. It's not really possible to state a measurement-based result to a 100% confidence level.

T F 7. A least squares adjustment can adjust random and systematic errors.
T F 8. A discrepancy is the difference between the same quantity measured by two different field crews.

Choice For each of the following errors indicate the source and type

Source
E Environment
I Instrumental
P Personal

Type
M Mistake
S Systematic
R Random

Source Type Error

E I P M S R Sticking compensator on automatic level.
E I P M S R Incorrect reflector offset in total station.
E I P M S R Manufacturer's stated angle accuracy for a total station.
E I P M S R Heat waves when sighting across pavement.
E I P M S R GPS multipath.
E I P M S R The crosshairs in a total station are slightly rotated and off center.
E I P M S R Magnetic declination

Measurement Errors and Their Effects - Assignment

Question (1) What is a degree of freedom?

Question (2) Why would a minimally constrained adjustment be performed?

Question (3) What are a priori errors and what are they used for?

Question (4) Your new survey tech got to run the manual total station on a lot survey for the first time. You checked the total of her measured angles on the loop traverse that was run through the six property corners and came up with $720^{\circ} 00^{\prime} 36^{\prime \prime}$. What was her measurement random error per angle?

Question (5) Why balance foresight and backsight distances in differential leveling?

Question (6) This one could require a little bit of digging. For a horizontal network:
Part (a) does your primary survey adjustment software have an option to check ALTA/ACSM adherence?

Part (b) How does your software determine the size of the 95\% confidence interval error ellipse?

Extra credit

To re-establish the lost E1/4 corner of Section 20 a base receiver is set up over the existing NE corner and a roving unit on a 2 meter rod is used to measure a distance of 5283.44 ft to the existing SE corner. What is the expected distance error between the NE and E1/4 corner location after it is re-set with the rover? Assume the base receiver set up height is 5.58 ft , its centering error is 0.005 ft , and the NE corner elevation is 1455 (scaled). It is $75^{\circ} \mathrm{F}, 29.95^{\prime \prime} \mathrm{Hg}$ barometric pressure, 70% relative humidity, with wind gusting to 20 mph . The rover antenna centering error is 0.10 ft at both the SE and E1/4 corners. Both receivers have a manufacturer's stated horizontal accuracy of $8 \mathrm{~mm}+1 \mathrm{ppm}$ and vertical accuracy of $15 \mathrm{~mm}+1.5 \mathrm{ppm}$.

