

C. Magnetic Conversions

4. Variation

Magnetic north moves over time
Variation is amount and direction declination changes over time

Variation is not constant.
While we can record past declinations, it's not easy to predict future declination.

C. Magnetic Conversions
5. Isogonic Chart
map of declination at a specific time

Isogonic line
line of equal declination Agonic line
line of 0° declination

Historic Magnetic Declination https://www.ncei.noaa.gov/map s/historical declination/

C. Magnetic Conversions

6. Behavior

True North does not move over time. The line whose direction is measured does not move over time.
Only Magnetic North moves over time.
That means:
A line's true direction does not change. A line's magnetic direction does change.

C. Magnetic Conversions

7. computations

Problem (1) [Assign \#2]
The magnetic bearing of line $A B$ in 1885 was recorded as $N 58^{\circ} 45^{\prime}$ E and the declination was $5^{\circ} 20^{\prime}$ E. What is the true bearing of the line?

Build the sketch in pieces. Add the declination \& magnetic meridian.

C. Magnetic Conversions

7. computations

Problem (1) [Assign \#2]
The magnetic bearing of line $A B$ in 1885 was recorded as $N 58^{\circ} 45^{\prime} \mathrm{E}$ and the declination was $5^{\circ} 20^{\prime} E$. What is the true bearing of the line?

Build the sketch in pieces.
Add the declination \& magnetic meridian.
Then the line and magnetic bearing.
And finally label the true bearing.

C. Magnetic Conversions

7. computations

Problem (2) [Assign \#3]
The magnetic bearing of line $P Q$ in 1925 was recorded as $586^{\circ} 35^{\prime} \mathrm{W}$. The present true bearing of the line is $579^{\circ} 50^{\prime} \mathrm{W}$. What was the declination in 1925 ?

C. Magnetic Conversions

7. computations

Problem (2) [Assign \#3]
The magnetic bearing of line $P Q$ in 1925 was recorded as $586^{\circ} 35^{\prime} \mathrm{W}$. The present true bearing of the line is $579^{\circ} 50^{\prime} \mathrm{W}$. What was the declination in 1925?

Add the line with its true bearing. Using the 1925 magnetic bearing, add the magnetic meridian.

C. Magnetic Conversions

7. computations
problem (3) [Assign \#4]
The magnetic bearing of line ST in 1963 was recorded as $N 38^{\circ} 55^{\prime} \mathrm{W}$.
The present magnetic bearing of the line is $N 31^{\circ} 50^{\prime} \mathrm{W}$ and declination is $3^{\circ} 20^{\prime} \mathrm{W}$.
(1) What is the true bearing of the line?
(2) What was the declination in 1963 ?

C. Magnetic Conversions

MONDAYS
7. computations

Problem (3) [Assign \#4]
The magnetic bearing of line ST in 1963 was recorded as $N 38^{\circ} 55^{\prime} \mathrm{W}$.
The present magnetic bearing of the line is $N 31^{\circ} 50^{\prime} \mathrm{W}$ and declination is $3^{\circ} 20^{\prime} \mathrm{W}$.
(1) What is the true bearing of the line? $\mathrm{TBrg}=\mathrm{N} 35^{\circ} 10^{\prime} \mathrm{W}$
(2) What was the declination in 1963?
$\delta_{1963}=3^{\circ} 45^{\prime} E$

C. Magnetic Conversions

7. computations
problem (4) [Assign \#5]
In 1890:
Mag brg of $A B=530^{\circ} 50^{\prime} E$
Mag brg of $B C=N 85^{\circ} 30^{\prime} E$
Ded $=3^{\circ} 00^{\prime}$ E
In 1960:
Mag brg $A B=521^{\circ} 10^{\prime} E$
Mag brg $B C=$?
C. Magnetic Conversions
7. Computations

Problem (4) [Assign \#5]
In 1890:
Mag brg of $A B=530^{\circ} 50^{\prime} E$
Mag brg of $B C=N 85^{\circ} 30^{\prime} E$
Decl $=3^{\circ} 00^{\prime}$ E
In 1960:
Mag brg $A B=S 21^{\circ} 10^{\prime} E$
mag brg $B C=$?
$\underline{\text { Magbrg }}=584^{\circ} 50^{\prime} E$

D. Traverse to Traverse Conversion

Often, when computing a traverse, the direction of one line is assumed If the relationship between assumed north and true north can be determined then the true directions of the traverse lines can be computed.

This can also be done when two surveyors use two different assumed directions for adjacent surveys. If the surveys share a line, then one survey can be rotated into the other.

D. Traverse to Traverse Conversion

[Assign \#6]
pick one end of the common line as a pivot point.
Rotate one survey into the other.
To rotate Jones' survey into Black's...

$$
\begin{aligned}
& 42^{\circ} 06^{\prime} 20^{\prime \prime}-24^{\circ} 29^{\prime} 57^{\prime \prime}= \\
& 17^{\circ} 36^{\prime} 23^{\prime \prime} \mathrm{cow}
\end{aligned}
$$

E. Grid and Geodetic Conversions

MEMDAYS

1. Geodetic North

Geodetic north is defined by the reference ellipsoid and its fit.
NAD 83 uses GRS 80 which is closely fit to Earth's mass center.

Normal A line from the observer's position, P, perpendicular to the ellipsoid
meridian An elliptical section containing the normal and semi-minor axes.
Geodetic meridians converge.

E. Grid and Geodetic Conversions

2. Grid North

A function of the projection \& its fit. Grid north meridians are parallel
a. Cone: Lambert Conic
convergence, γ, is angle between Grid and Geodetic North.
$\gamma=0^{\circ}$ at CM , magnitude increases moving E or W

2. Grid North
c. Converting
γ is:
positive East of the cm
negative West of the cm
$t=\alpha-\gamma$

+ Grid azimuth
a Geodetic azimuth
γ Convergence

E. Grid and Geodetic Conversions

3. Where do we get convergence?

NGS Survey Mark Datasheet

E. Grid and Geodetic Conversions

Mompars
5. Grid to Grid [Assign \#7b]

Sometimes we need to convert a direction from one grid system to another.
To do so we need the convergence at the point for both systems.
At point Platteville:

wis South SPC grid az $=135^{\circ} 18^{\prime} 25^{\prime \prime}$. What is UTM Zone 15 grid az?

$$
\begin{aligned}
& t=\alpha-\gamma \rightarrow \alpha=t_{\text {SPC }}+\gamma_{\text {SPC }} \\
& t_{\text {urm }}=\alpha-\gamma_{\text {urm }}=\left(t_{\text {SPC }}+\gamma_{\text {SPC }}\right)-\gamma_{\text {uTM }}=\left(135^{\circ} 18^{\prime} 25^{\prime \prime}+\left[-0^{\circ} 19^{\prime} 43.9^{\prime \prime}\right]\right)-\left(+1^{\circ} 42^{\prime} 41.9^{\prime \prime}\right) \\
& =133^{\circ} 15^{\prime} 59.2^{\prime \prime}
\end{aligned}
$$

F. PLSS corner Restoration Using Grid Coordinates

1. Cardinal Equivalents

Direction basis for PLSS is True Meridian.
If working in SPC or UTM, must convert Grid to True directions.
2009 manual treats Geodetic and True the same, which isn't technically true, but close enough.

To determine cardinal equivalents using grid directions, apply the convergence.

grid: $5183.60 \mathrm{ft}{\mathrm{N} 87^{\circ} 30^{\prime} 10^{\prime \prime} \mathrm{W}}^{\prime}$
correct for convergence

G. Trivia: Astronomic

1. Background

In traditional control surveys, directions were determined using astronomic observations. Observing stars, typically Polaris.

wild T-4 theodolite, used exclusively for star observations.
$0.1^{\prime \prime}$ circle resolution $H, 0,05^{\prime \prime}$ est,
Only 439 produced. weight: 220 lbs

Wild T-3theodolite, used for star observations and triangulation. $0.2^{\prime \prime}$ circle resolution; 0.1" estimation

Kern DKM3 used for star observations and triangulation. $0.5^{\prime \prime}$ circle resolution; $0.1^{\prime \prime}$ estimation

G. Trivia: Astronomic
2. Astronomic North
"...the positive direction of a line tangent to the (gravity) equipotential surface at the observer." ... ???
NGS Geodetic Glossary

Observation of celestial body to determine location of astronomic north.

Instrument is oriented to the geoid, which is irregular.

G. Trivia: Astronomic
ulentaring 1
MEMDAYS
2. Astronomic North

A star is observed at night. Horiz \& vert angles measured. Time of obs recorded.

Ephemeris used to determine star position at obs time.

Star and instrument positions are used to calculate where astronomic (celestial) north is.

PZS triangle

Celestial Sphere

G. Trivia: Astronomic

4. Laplace Correction

A component of the deflection of the vertical used to correct an astronomic direction to a geodetic one.
[Assign \#8]

$$
\alpha_{A^{-}}-\alpha_{G}=\left(\lambda_{A^{-}} \lambda_{G}\right) \sin \varphi_{G}
$$

α_{A}-astronomic direction Astronomic values are
α_{G} - geodetic direction
λ_{A} - astronomic longitude
λ_{G} - geodetic longitude
φ_{G} - geodetic latitude
$\left(\lambda_{A}-\lambda_{G}\right) \sin \varphi_{G}$-LaPLace correction
referenced to geoid.
Geodetic values are referenced to ellipsoid.

G. Trivia: Astronomic
4. Laplace Correction
will you ever use the Laplace correction?
probably not, but it's interesting trivia you can use to impress your friends.

