
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

ALTA/NSPS Position Standards

CurrentALTA/NSPS Position Standards

> 3.E.i. Relative Positional Precision"" means the length of the semi-major axis, expressed in meters or feet, of the error ellipse representing the uncertainty in the position of the monument or witness marking any boundary cornerof the surveyed property relative to the position of the monument or witness marking an immediately yadjacent toundary cornerof the surveyed property resulting from random errors in the measurements made in determining those positions at the 95 percent confidence level. Relative Positional Precision can be estimated by the results of a correctly weighted least squares adjustment of the survey. Alternatively, Relative Positional Precision can be estimated by the standard deviation of the distance between the monumentor witness marking any boundary corner of the surveyed property and the monument or witness marking an immediately adjacent boundary corner of the surveyed property (called local accuracy) that can be computed using the full covariance matrixo f the coordinate inverse between any given pair of points, understanding that Relative Positional Precision is based on the 95 percentconfidence level, or approximately 2 standard deviations. 3.E.v. The maximum allowable Relative Positional Precision for an ALTA/NSPS Land Title Survey is 2 cm (0.07 feet) plus 50 parts per million (based on the direct distance between the two corners being tested)...

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Being retired, I should leave well enough alone \qquad
But some things bothered me about the Wis standards and, by extension, the ALTA/NSPS standards: 1. What do "plus or minus 0.13 foot plus 50 parts per million" and " 2 cm (0.07 feet) plus 50 parts per million" mean?
2. ALTA/NSPS: "Relative Positional Precision is based on the 95 percent confidence level, or approximately 2 standard deviations."

Dan Rodman, who recently started as an instructor at Madison College, serves as my sounding board. Dan Rodman, who recently started as an instructor at Madison College, serves as my sounding board
Dan has extensive field experience with newer technology and has been using various adjustment Dan has extensive field exper
software packages for years.
I always learn something every time I discuss an issue with him.
(I'm trying to talk him into doing some Mentoring Monday presentations).

ALTA/NSPS Position Standards

The Rabbit Hole

1. RPP Standard

The firstissue, numeric interpretation of " 2 cm (0.07 feet) plus 50 parts per million"
RPP is based on random errors, which are small and tend to compensate.
They are generally expressed as "plus or minus" or with a " \pm " prefix.
Examples: Manufacturer State Accuracy for Total Stations and GPS
Topcon GTS-3ONSeries total station

 proportional one based on distance.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ALTA/NSPS Position Standards \square

\qquad
\qquad

ALTA/NSPS Position Standards

The Rabbit Hole

1. RPP Standard

So, I contacted Gary Kent:
"The RPP is the maximum against which the adjustment results are judged. How is the RPP computed? As an Error of
a Sum or simple sum? This is doubly important
Wisconsin, the language is "plus or minus 0.013 foot plus 100 parts per million." without explaining how it is eys. In determined."
Gary's response:
"With regard to calculating the RPP of a given coordinate relationship, I agree with you that I think the proper Calculation would involve the square root of the sum of the squares. I have cited Ghilani, Brown and Eldridge, and n the topic (although most of the time it seems these days that they want me to cover the entire standards in $2-4$ on the topic (aithough most of the time it seems thene days that they want me to ocver the entire standards in 2 -4
hours, so I don't have time to dwell on RP). My handout shows the square root of the sum of the squares as the proper calculation.
There have been times for sake of time, and to make a brief point, that when showing what is allowed by 0.07 and 50 ppm , I simply add them together, but I tell people the handout goes into much more detail."

\qquad
\qquad

ALTA/NSPS + Wis Comparisons
Both graphs are scaled the same The summation approach is more forgiving.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ALTA/NSPS Position Standards

The Rabbit Hole

\qquad

But, by how much?
\qquad
\qquad
" 95 percent confidence level, or approximately 2 stand
Because random errors are small and tend to be \pm,
repeating measurements gives them greater opportunity
to cancel.
The more measurements we have, the smaller the SEE area.
Technically, the multiplier should be a function of the number of redundant measurements.
deviations."
Enity
area.
\qquad
\qquad
\qquad
\qquad
\qquad

ALTA/NSPS Position Standards $\xrightarrow{\square}$

The Rabbit Hole
2. "95 percent confidence level, or approximately 2 standard deviations."

\qquad
Ghilani, along with other authors, use the F statistic
The multiplier is computed from: $c=\sqrt{2 \times F_{s}}$
F_{s} is the F statistic modifier.
comes from a table based on the CI level and number of
of freedom, df).
A table subset at the $95 \% \mathrm{Cl}$, along with computed multiplier is shown at right
For c to equal 2 as per ALTA/NSPS, F_{5} would equal 2 . The F statistic table in Ghilani's text maxes out at $\mathrm{DF}=120$ where F_{5} is 3.07 .

So the $95 \% \mathrm{Cl}$ should be a function of the number of redundancies not a general multiplier.

ALTA/NSPS Position Standards

The Rabbit Hole

3. All of which gave rise to a third issue with a few sub-issues.
"results of a correctly weighted least squares adjustment of the survey."
No brainer, right? We all use software which does our adjustments for us.
Many packages even include ALTA/NSPS RPP checks.
But, some questions about the software:
a. If it has an ALTA/NSPS test, how does it compute RPP? Squared or linear? b. How does it scale the SEE?
c. Which a priori values, if any, can the user input? How does it use these?

\qquad
\qquad
\qquad

ALTA/NSPS Position Standards
The Rabbit Hole
3. All of which gave rise to a third issue with a few sub-issues
c. Which a priori values, if any, can the user input? How does it use these to weight the
c. Which a prior measurements?

Here's where we can run into some serious problems.
A priorivalues fall into two general categories

- Instrumental: Manufacturer's stated measurement accuracy

Personal: Set up errors, ie, centering
These affect weighting and error prorogation.

ALTA/NSPS Position Standards

The Rabbit Hole
3. All of which gave rise to a third issue with a few sub-issues.
c. Which a priori values, if any, can the user input? How does it use these to weight the
measurements?
Example: Distance
per Ghilani:

c. Which a priori values, if any, can the user input? How does it use these to weight the measurements?
Example: Angles are even more complex

$$
\begin{aligned}
& \text { Point \& read } E_{r r \prime}=\frac{2 \times E_{p u x}}{\sqrt{n}} \\
& \text { Inst centering } \quad E_{T y}=\frac{D \times E_{1}}{D_{\mathrm{ss}} \times D_{5 s} \times \sqrt{2}} \\
& \text { Target centering } \quad F_{r}=\sqrt{\left(\frac{E_{s s}}{D_{s s}}\right)^{2}+\left(\frac{E_{s s}}{D_{s s}}\right)^{2}} \\
& E_{\text {nege }}=\sqrt{E_{f n}^{2}+E_{\pi y}^{2}+E_{t}^{2}}
\end{aligned}
$$

\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

