3. Examples
In the following examples shown, all calculations are shown with an additional significant figure. Because these are generally intermediate computations, carrying an additional digit minimizes roundoff error in subsequent calculations.
When reporting results of an intermediate calculation, those should be stated to the correct number of significant figures so as not to imply an accuracy beyond that of the measurements.
a. Traverse with bearings
Lat and Dep will always compute as positive; must assign correct mathematical sign based on the bearing quadrant.


Figure D10 Bearing Traverse 
Line AB
Because the bearing is South and West, the Lat and Dep are 176.357' and 438.548' respectively.
Line BC
Because the bearing is North and West, the Lat and Dep are +203.395' and 73.093' respectively.
Line CD
Because the bearing is North and East, the Lat and Dep are +192.357' and +198.651' respectively.
Line DA
Because the bearing is South and East , the Lat and Dep are 219.312' and +313.065' respectively
In tabular form:
Line 
Bearing 
Length (ft) 
Lat (ft) 
Dep (ft) 
AB 
S 68°05'35"W 
472.68 
176.357 
438.548 
BC 
N 19°46'00"W 
216.13 
+203.395 
73.093 
CD 
N 45°55'20"E 
276.52 
+192.357 
+198.651 
DA 
S 54°59'15"E 
382.24 
219.312 
+313.065 
sums: 
1347.57 
+0.083 
+0.075 

Distance 
Lat err 
Dep err 


too far N 
too far E 
b. Traverse with azimuths
Lat and Dep will always compute directly with the correct sign when using azimuths. 

Figure D11 Azimuth Traverse 
Line ST
Line TU
Line UV
Line VS
Line 
Azimuth 
Length (ft) 
Lat (ft) 
Dep (ft) 
ST 
309°05'38" 
347.00 
+218.816 
269.311 
TU 
258°34'22" 
364.55 
72.226 
357.324 
UV 
128°04'44" 
472.74 
291.560 
+372.123 
VS 
60°21'26" 
292.94 
+144.885 
+254.602 
sums: 
1477.23 
0.085 
+0.090 

Distance 
Lat err 
Dep err 

too far S 
too far E 
c. Crossing Traverse
A foursided parcel has two obstructed lines.
Figure D12 Parcel Boundaries 
In order to create a closed traverse, the survey crew measures a crossing traverse which connects all four points.
As long as a traverse closes back on its beginning point, the closer condition is still: regardless of how many times it may cross itself.
Given this traverse data, determine its closure and precision.


Figure D13 
Rather than write out each Lat and Dep computation separately, we can simply set up the table and record the computations in it.
Line 
Azimuth 
Length (ft) 
Lat (ft) 
Dep (ft) 
EF 
133°02'45" 
455.03 
310.780 
+332.737 
FG 
24°33'35" 
228.35 
+207.691 
+94.912 
GH 
241°05'15" 
422.78 
204.403 
370.084 
HE 
349°25'20" 
213.85 
+307.534 
57.430 
sums: 
1419.28 
+0.042 
+0.135 

Distance 
Lat err 
Dep err 

too far N 
Too far E 
 << Prev
 Next